The search functionality is under construction.

Author Search Result

[Author] Jun-ichi TAKADA(67hit)

41-60hit(67hit)

  • Performance Evaluation for RF-Combining Diversity Antenna Configured with Variable Capacitors

    Hiroya TANAKA  Jun-ichi TAKADA  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    488-494

    An RF adaptive array antenna (RF-AAA) configured with variable capacitors is proposed. This antenna system can control the power combining ratio and phase value of received signals. In this paper, we focus on the diversity effects of RF-AAA. First, we show the design methodology of the combiner circuit to realize the effective combining. Second, the perturbation method and the steepest gradient method are compared for the optimization algorithms to provide fast convergence and suboptimum solutions among the variable circuit constants. Finally, in simulation, we show the RF-AAA can achieve diversity antenna gains of 7.7 dB, 10.9 dB and 12.6 dB for 2-branch, 3-branch and 4-branch configuration, respectively, which have higher performance than the selection combining.

  • A Guide of Fingerprint Based Radio Emitter Localization Using Multiple Sensors Open Access

    Tao YU  Azril HANIZ  Kentaro SANO  Ryosuke IWATA  Ryouta KOSAKA  Yusuke KUKI  Gia Khanh TRAN  Jun-ichi TAKADA  Kei SAKAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2018/04/17
      Vol:
    E101-B No:10
      Page(s):
    2104-2119

    Location information is essential to varieties of applications. It is one of the most important context to be detected by wireless distributed sensors, which is a key technology in Internet-of-Things. Fingerprint-based methods, which compare location unique fingerprints collected beforehand with the fingerprint measured from the target, have attracted much attention recently in both of academia and industry. They have been successfully used for many location-based applications. From the viewpoint of practical applications, in this paper, four different typical approaches of fingerprint-based radio emitter localization system are introduced with four different representative applications: localization of LTE smart phone used for anti-cheating in exams, indoor localization of Wi-Fi terminals, localized light control in BEMS using location information of occupants, and illegal radio localization in outdoor environments. Based on the different practical application scenarios, different solutions, which are designed to enhance the localization performance, are discussed in detail. To the best of the authors' knowledge, this is the first paper to give a guideline for readers about fingerprint-based localization system in terms of fingerprint selection, hardware architecture design and algorithm enhancement.

  • Characterization of Broadband Mobile Communication Channel in 200MHz Band Based on Saleh-Valenzuela Model

    Hiroki OHARA  Hirokazu SAWADA  Masayuki OODO  Fumihide KOJIMA  Hiroshi HARADA  Kentaro SAITO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2277-2288

    Digitization of analog terrestrial TV broadcasting has recently been accelerated in many countries, and the effective utilization of vacant frequencies has also been investigated for new systems in each country. In Japan, a portion of vacant frequencies in the VHF-high band was allocated to the public broadband mobile communication (PBB) system. To evaluate the current PBB system and develop future broadband communication systems in this band, it is important to analyze the propagation channel more accurately. In this study, we characterize the propagation channel for 200MHz band broadband mobile communication systems, using measured channel impulse responses (CIRs). In the characterization process, the Saleh-Valenzuela (S-V) model is utilized to extract channel model parameters statistically. When evaluating the fluctuation of path power gain, we also propose to model the fluctuation of path power gain using the generalized extreme value distribution instead of the conventional log-normal distribution. The extracted CIR model parameters are validated by cumulative distribution function of root-means-square delay spread and maximum excess delay, comparing simulation result to measurement result. From the extracted CIR model parameters, we clarified the characteristics of 200MHz band broadband mobile communication systems in non-line-of-sight environments based on S-V model with the proposed channel model.

  • Accurate Angle-of-Arrival Estimation Method in Real System by Applying Calibration and Spatial Smoothing

    Panarat CHERNTANOMWONG  Jun-ichi TAKADA  Hiroyuki TSUJI  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:10
      Page(s):
    2915-2925

    Although subspace-based methods for estimating the Angle of Arrival (AOA) require a precise array response to achieve highly accurate results, it is difficult to obtain this response in practice even though the antennas are calibrated. Therefore, a method of compensating for errors in calibration is required. This paper proposes a procedure to enable precise AOA estimates to be obtained in a real system by applying array calibration and spatial smoothing preprocessing (SSP). Measured data were collected from experiments using two scenarios, i.e., in an anechoic chamber and at an open site, where a single source signal arrived at the array antenna. All measured data were then calibrated by using data obtained at 0 deg in an anechoic chamber before the AOAs were estimated. Nevertheless, errors in the array response remained after calibration because errors in the AOA estimates could still be observed. SSP was then applied to the calibrated data to obtain more accurate AOA estimates. We found that SSP can reduce the random error in an array response obtained in a real system, leading to reduced errors in AOA estimates in the observed data. To generalize the problem that SSP can reduce random perturbation in the array response, simple expressions are illustrated and verified by Monte-Carlo simulation. Random gain and phase errors in the array response are only considered in this paper and ESPRIT was used to estimate the AOAs.

  • Double Directional Ultra Wideband Channel Characterization in a Line-of-Sight Home Environment

    Katsuyuki HANEDA  Jun-ichi TAKADA  Takehiko KOBAYASHI  

     
    PAPER-Propagation

      Vol:
    E88-A No:9
      Page(s):
    2264-2271

    This paper introduces the concept of measuring double directional channels in ultra wideband (UWB) systems. Antenna-independent channel data were derived by doing the measurements in a wooden Japanese house. The data were useful for investigating the impact of UWB antennas and analyzing waveform distortion. Up to 100 ray paths were extracted using the SAGE algorithm and they were regarded as being dominant. The paths were then identified in a real environment, in which clusterization analyses were done using the directional information on both sides of the radio link. Propagating power was found to be concentrated around the specular directions of reflection and diffraction. This led to the observation that the spatio-temporal characteristics of extracted paths greatly reflected the structure and size of the environment. The power in the clusters indicated that the estimated 100 paths contained 73% of the total received power, while the rest existed as diffuse scattering, i.e., the accumulation of weaker paths. The practical limits of path extraction with SAGE were also discussed. Finally, we derived the scattering loss and intra-cluster properties for each reflection order, which were crucial for channel reconstrucion based on the deterministic approach.

  • The Bandwidth and the Gain of Radial Line Slot Antennas with Uniform Slot Density

    Jun-ichi TAKADA  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E73-E No:8
      Page(s):
    1372-1377

    A Circularly-Polarized Radial Line Slot Antenna (CP-RLSA) is a high gain planar antenna for DBS reception. From the practical point of view, it is necessary to overlook the performance of RLSA as a function of various design parameters. This paper presents the general design of CP-RLSA with uniform slot density and predicts the bandwidth and the gain of RLSA by array antenna analysis. In the calculation, the slot coupling is evaluated by full wave analysis and the effects of all the design parameters are taken into account. The long line effect reduces the bandwidth of RLSA monotonously with the antenna diameter. The bandwidth is limited by slot resonance as well and the overall bandwidth is less dependent of the diameter. 3dB bandwidth of 650 MHz is predicted for antenna diameter of 600 mm, for example. Among various design parameters, permittivity of slow wave structure affects the bandwidth and gain considerably; εγ1.41.8 is preferable. On the other hand, the height of waveguide and the slot pair angular spacing have little influence, though lower waveguide and smaller spacing are advantageous for a stable rotational symmetry of inner field.

  • An Equivalent Circuit of a Slot in Radial Line Slot Antennas

    Jun-ichi TAKADA  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antenna

      Vol:
    E74-C No:9
      Page(s):
    2922-2928

    A radial line slot antenna (RLSA) is a high gain and high efficiency planar antenna for DBS reception and VSAT terminals. To generalize the slot design of RLSA, it is necessary to estimate the radiation, reflection and the transmission characteristics of a slot. This paper presents an equivalent circuit of a slot on radial waveguide. A periodic structure model is used in the moment method analysis, to simulate the slot coupling in rotationally symmetric antenna operation in the oversized radial line. Radiation and reflection coefficients are expressed in the S-matrix form; the slot length dependence of the matrix element is discussed.

  • Channel Model on Various Frequency Bands for Wearable Body Area Network

    Norihiko KATAYAMA  Kenichi TAKIZAWA  Takahiro AOYAGI  Jun-ichi TAKADA  Huan-Bang LI  Ryuji KOHNO  

     
    PAPER

      Vol:
    E92-B No:2
      Page(s):
    418-424

    Body Area Network (BAN) is considered as a promising technology in supporting medical and healthcare services by combining with various biological sensors. In this paper, we look at wearable BAN, which provides communication links among sensors on body surface. In order to design a BAN that manages biological information with high efficiency and high reliability, the propagation characteristics of BAN must be thoroughly investigated. As a preliminary effort, we measured the propagation characteristics of BAN at frequency bands of 400 MHz, 600 MHz, 900 MHz and 2400 MHz respectively. Channel models for wearable BAN based on the measurement were derived. Our results show that the channel model can be described by using a path loss model for all frequency bands investigated.

  • Multi-Dimensional Radio Channel Measurement, Analysis and Modeling for High Frequency Bands Open Access

    Minseok KIM  Jun-ichi TAKADA  Kentaro SAITO  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    293-308

    In order to utilize higher frequency bands above 6GHz, which is an important technical challenge in fifth generation mobile systems, radio propagation channel properties in a large variety of deployment scenarios should be thoroughly investigated. The authors' group has been involved in a fundamental research project aimed at investigating multiple-input-multiple-output (MIMO) transmission performance and propagation channel properties at microwave frequency above 10GHz from 2009 to 2013, and since then they have been conducting measurement and modeling for high frequency bands. This paper aims at providing comprehensive tutorial of a whole procedure of channel modeling; multi-dimensional channel sounding, propagation channel measurement, analysis, and modeling, by introducing the developed MIMO channel sounders at high frequency bands of 11 and 60GHz and presenting some measurement results in a microcell environment at 11GHz. Furthermore, this paper identifies challenges in radio propagation measurements, and discusses current/future channel modeling issues as future works.

  • Development of MIMO-SDR Platform and Its Application to Real-Time Channel Measurements

    Kei MIZUTANI  Kei SAKAGUCHI  Jun-ichi TAKADA  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E89-B No:12
      Page(s):
    3197-3207

    A multiple-input multiple-output software defined radio (MIMO-SDR) platform was developed for implementation of MIMO transmission and propagation measurement systems. This platform consists of multiple functional boards for baseband (BB) digital signal processing and frequency conversion of 5 GHz-band radio frequency (RF) signals. The BB boards have capability of arbitrary system implementation by rewriting software on reconfigurable devices such as field programmable gate arrays (FPGAs) and digital signal processors (DSPs). The MIMO-SDR platform employs hybrid implementation architecture by taking advantages of FPGA, DSP, and CPU, where functional blocks with the needs for real-time processing are implemented on the FPGAs/DSPs, and other blocks are processed off-line on the CPU. In order to realize the hybrid implementation, driver software was developed as an application program interface (API) of the MIMO-SDR platform. In this paper, hardware architecture of the developed MIMO-SDR platform and its software implementation architecture are explained. As an application example, implementation of a real-time MIMO channel measurement system and initial measurement results are presented.

  • On Applicability of the Integral Equation Formulation of the Measured Equation of Invariance to 2D Scattering Objects

    Masanobu HIROSE  Masayasu MIYAKE  Jun-ichi TAKADA  Ikuo ARAI  

     
    PAPER-Antennas and Propagation

      Vol:
    E82-B No:4
      Page(s):
    645-654

    This paper shows the applicability of the integral equation formulation of the measured equation of invariance (IE-MEI) to two-dimensional dielectric scatterers. That is, a relationship between the scattered electric and magnetic fields, which is derived from the new formulation of the IE-MEI, is applicable to lossless dielectric materials as well as perfect electric conductors (PEC). In addition, we show that the IE-MEI does not suffer from internal resonance problems. These two facts are validated by numerical examples for a circular cylinder and a square cylinder illuminated by Transverse Magnetic (TM) plane wave or a TM line source very close to the scatterers. The numerical results calculated by the IE-MEI agree well with the ones by moment methods that employ combined field formulations with exact boundary conditions.

  • Measurement Techniques of Emissions from Ultra Wideband Devices

    Jun-ichi TAKADA  Shinobu ISHIGAMI  Juichi NAKADA  Eishin NAKAGAWA  Masaharu UCHINO  Tetsuya YASUI  

     
    INVITED PAPER

      Vol:
    E88-A No:9
      Page(s):
    2252-2263

    This paper describes the measurement techniques of emissions from UWB devices discussed in ITU-R task group (TG) 1/8 to study the compatibility between ultra-wideband (UWB) devices and radiocommunication services. This paper also provides the background idea behind the measurement methods, as the final output of the discussion, i.e. ITU-R Recommendation, will not contain any citations to the references, nor any "educational" description of the theoretical background.

  • A Ray-Tracing-Based Characterization and Verification of the Spatio-Temporal Channel Model for Future Wideband Wireless Systems

    Houtao ZHU  Jun-ichi TAKADA  Kiyomichi ARAKI  Takehiko KOBAYASHI  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:3
      Page(s):
    644-652

    A proper design and analysis of future wideband wireless communication systems require an accurate radio channel model. This model is claimed to characterize both the spatial and temporal channel characteristics. This paper investigates the spatio-temporal channel modeling based on a ray-tracing approach. The temporal channels are characterized by a delay profile. The statistical median and fading-fluctuation range of delay profiles are predicted from ray tracing by incorporating the random phase approach. A high level of agreement between predicted results and measured ones is observed in the verification. The spatio-temporal channel impulse response (CIR) predicted from ray tracing is also transformed to have limited band-width and limited beam-width characteristics. The applicability of this transformation is also verified by the comparison with measurement. These verifications prepare the ground for the use of ray-tracing approaches to evaluate system performance in real environments.

  • A Novel Architecture for MIMO Spatio-Temporal Channel Sounder

    Kei SAKAGUCHI  Jun-ichi TAKADA  Kiyomichi ARAKI  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    436-441

    Implementation of Multi-Input Multi-Output (MIMO) channel sounder is considered, taking hardware cost and realtime measurement into account. A remarkable difference between MIMO and conventional Single-Input Multi-Output (SIMO) channel sounding is that the MIMO sounder needs some kind of multiplexing to distinguish transmitting antennas. We compared three types of multiplexing TDM, FDM, and CDM for the sounding purpose, then we chose FDM based technique to achieve cost effectiveness and realtime measurement. In the framework of FDM, we have proposed an algorithm to estimate MIMO channel parameters. Furthermore the proposed algorithm was implemented into the hardware, and the validity of the proposed algorithm was evaluated through measurements in an anechoic chamber.

  • FOREWORD Open Access

    Jun-ichi TAKADA  

     
    FOREWORD

      Vol:
    E92-B No:12
      Page(s):
    3571-3571
  • Versatile Radio Channel Sounder for Double Directional and Multi-link MIMO Channel Measurements at 11 GHz

    Yohei KONISHI  Yuyuan CHANG  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    994-1004

    This paper presents a $24 imes24$ MIMO channel sounder that has been developed based on a scalable fully parallel MIMO architecture. It can be flexibly configured with 3 sub-transmitters and 3 sub-receivers, each of which consists of 8 RF ports. This flexibility allows the measurement for both purposes of double directional and multi-link MIMO channel measurements. Implementation issues related to the multi-link operation on the fully parallel architecture were successfully solved by appropriate system design and applying several calibration techniques. The performance of the developed system was validated by extensive test experiments. Finally, a multi-link channel measurement example in an indoor environment was presented demonstrating the capability of the proposed system.

  • A Spatial Fading Emulator for Evaluation of MIMO Antennas in a Cluster Environment

    Tsutomu SAKATA  Atsushi YAMAMOTO  Koichi OGAWA  Hiroshi IWAI  Jun-ichi TAKADA  Kei SAKAGUCHI  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2127-2135

    This paper presents a spatial fading emulator for evaluating handset MIMO antennas in a cluster environment. The proposed emulator is based on Clarke's model and has the ability to control RF signals directly in spatial domain to generate an accurate radio propagation channel model, which includes both uniform and non-uniform angular power spectra (APS) in the horizontal plane. Characteristics of a propagation channel such as fading correlations, eigenvalues and MIMO channel capacities of handset antennas located in the vicinity of the emulator's ring can be evaluated. The measured results show that the fading emulator with 31 antenna probes is sufficient to evaluate fading correlation and MIMO channel capacity of handset antenna in the case of a narrow APS with the standard deviation of more than 20 degrees.

  • Spatial Fading Simulator Using a Cavity-Excited Circular Array (CECA) for Performance Evaluation of Antenna Arrays

    Chulgyun PARK  Jun-ichi TAKADA  Kei SAKAGUCHI  Takashi OHIRA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:3
      Page(s):
    906-913

    In this paper we propose a novel spatial fading simulator to evaluate the performance of an array antenna and show its spatial stochastic characteristics by computer simulation based on parameters verified by experimental data. We introduce a cavity-excited circular array (CECA) as a fading simulator that can simulate realistic mobile communication environments. To evaluate the antenna array, two stochastic characteristics are necessary. The first one is the fading phenomenon and the second is the angular spread (AS) of the incident wave. The computer simulation results with respect to fading and AS show that CECA works well as a spatial fading simulator for performance evaluation of an antenna array. We first present the basic structure, features and design methodology of CECA, and then show computer simulation results of the spatial stochastic characteristics. The results convince us that CECA is useful to evaluate performance of antenna arrays.

  • Optimum Threshold for Indoor UWB ToA-Based Ranging

    Marzieh DASHTI  Mir GHORAISHI  Katsuyuki HANEDA  Jun-ichi TAKADA  Kenichi TAKIZAWA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:10
      Page(s):
    2002-2012

    This paper proposes a method for setting the threshold for ultra-wide-band (UWB) threshold-based ranging in indoor scenarios. The optimum threshold is derived based on the full analysis of the ranging error, which is equivalent to the probability of correct detection of first arriving signal in time-based ranging techniques. It is shown that the probability of correct detection is a function of first arriving signal, which has variations with two independent distributions. On the one hand, the first arriving signal varies in different positions with the same range due to multipath interference and on the other, it is a function of distance due to free space path-loss. These two distributions are considered in the derivation of the ranging error, based on which the optimum threshold is obtained. A practical method to derive this threshold is introduced based on the standard channel model. Extensive Monte Carlo simulations, ray-tracing simulations and ranging measurements confirm the analysis and the superior performance of the proposed threshold scheme.

  • Aperture Illumination Control in Radial Line Slot Antennas

    Masaharu TAKAHASHI  Jun-ichi TAKADA  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:7
      Page(s):
    777-783

    A radial line slot antenna (RLSA) is a high gain and high efficiency planar array. A single-layered RLSA is much simple in structure but the slot length must be varied to synthesize uniform aperture illumination. These are now commercialized for 12GHz band DBS reception. In RLSAs, considerable power is dissipated in the termination as is common to other traveling wave antennas; the uniform aperture illumination is not the optimum condition for high gain in RLSAs. Authors proposed a theoretical method reducing the termination loss for further efficiency enhancement. This paper presents the measured performances of the SL-RLSAs of this design with non-uniform aperture illumination. The efficiency enhancement of about 10% is observed; the measured gain of 36.7dBi (87%) and 32.9dBi (81%) for a 0.6mφ and 0.4mφ antennas respectively verify this technique.

41-60hit(67hit)